RVM with wavelet kernel combined with PSO for short-term load forecasting in electric power systems

نویسندگان

  • Liying WANG
  • Zheng
چکیده

This paper presents a new hybrid method for the short-term load forecasting in electric power systems based on particle swarm optimization (PSO) and relevance vector machine (RVM). In this method, we firstly develop a type of kernel as the kernel function of the RVM model, and then its parameter is optimized by the PSO, finally the established RVM forecast mode is applied to short-term load forecasting in electric power systems in a city. The simulation results show the parameter of the wavelet kernel is well optimized using the PSO, and the acquired RVM model is more sparse and can obtain higher forecast accuracy compared with the RVM model with Gaussian kernel, so the proposed method is effective for forecasting the short-term load in electric power systems. Streszczenie. W artykule zaprezentowano nową hybrydową metode krótkoterminowego prognozowania obciążeń sieci energetycznej bazująca na algorytmie mrówkowym PSO i narzędzia RVM (relevance vector machine). W pierwszym etapie wyznaczane jest falkowe jądro (kernel) jako RVM co znacznie poprawia skuteczność algorytmu PSO. (Hybrydowe połączenie funkcji PSO i RVM jako narzędzie do krótkoterminowego prognozowania obciążenia sieci energetycznej)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short term electric load prediction based on deep neural network and wavelet transform and input selection

Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...

متن کامل

Short Term Load Forecasting Using Empirical Mode Decomposition, Wavelet Transform and Support Vector Regression

The Short-term forecasting of electric load plays an important role in designing and operation of power systems. Due to the nature of the short-term electric load time series (nonlinear, non-constant, and non-seasonal), accurate prediction of the load is very challenging. In this article, a method for short-term daily and hourly load forecasting is proposed. In this method, in the first step, t...

متن کامل

Short-Term Load Forecasting for Electric Power Systems Using the PSO-SVR and FCM Clustering Techniques

This paper presents a new combined method for the short-term load forecasting of electric power systems based on the Fuzzy c-means (FCM) clustering, particle swarm optimization (PSO) and support vector regression (SVR) techniques. The training samples used in this method are of the same data type as the learning samples in the forecasting process and selected by a fuzzy clustering technique acc...

متن کامل

Short-Term Load Forecasting using PSO Based Local Linear Wavelet Neural Network

Short-term load forecasting (STLF) plays an important role in the operational planning security functions of an energy management system. The short term load forecasting is aimed at predicting electric loads for a period of minutes, hours, days or week for the purpose of providing fundamental load profiles to the system. The work presented in this paper makes use of PSO based local linear wavel...

متن کامل

Short term load forecast by using Locally Linear Embedding manifold learning and a hybrid RBF-Fuzzy network

The aim of the short term load forecasting is to forecast the electric power load for unit commitment, evaluating the reliability of the system, economic dispatch, and so on. Short term load forecasting obviously plays an important role in traditional non-cooperative power systems. Moreover, in a restructured power system a generator company (GENCO) should predict the system demand and its corr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011